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LE'ITER TO THE EDITOR 

Quantum algebras in classical mechanics 

Sergio A Hojmant 
ln~tituto de Ciencias Nueleares, Universidad Nacional Aut6noma de MCnieo, Circuit0 
Exterior, CU, 04510 Mexico, DF, MCxico 

Received 3 December 1990 

Abstract. It is shown that the equations of motion do not determine their Hamiltonian 
descriptions uniquely. In particular, different Poisson bracket relations are admissible for 
a given physical problem. The free symmetric lap and a charged particle moving on a 
homogeneous and constant magnetic field, for instance, may be described by a classical 
Hamiltonian theory with an SU(2), Poisson bracket structure. 

Quantum algebras have been much studied lately [1-6]. The purpose of this letter is 
to show that q-algebras are special cases of more general structures which arise when 
studying Hamiltonian descriptions of classical systems. In this letter, we derive some 
results which may also be obtained by using a general method (which will be explained 
in detail elsewhere [7]) and we use them to construct a few( simple and physically 
relevant examples of systems for which the Hamiltonian theory may he cast in terms 
of Poisson brackets with a q-algebra structure. 

The usual formulation of Hamiltonian dynamics is based on a Lagrangian descrip- 
tion of the equations of motion of the (regular) system considered [8,9]. Singular 
Lagrangian systems may also be dealt with using a procedure revised by Dirac [lo]. 

In this letter, we construct Hamiltonian theories taking the equations of motion as 
a starting point without using a Lagrangian description (which in some cases it may 
even fail to exist). There has been much interest in this approach lately (mostly in the 
fields of fluid dynamics and plasma physics [ l l ,  121). 

which 
represents the Poisson brackets between the (in general, non-canonical) coordinates 
in phase space and a Hamiltonian H. Given a system of first-order equations (if the 
original equations are not first-order they can always be recast in that way), 

The Hamiltonian description is based on an antisymmetric matrix 

( 1 )  x a  =j- (xb,  I )  a = 1,. . . , N. 

The Hamiltonian theory is given by Jab and H such that 

JH f   jab^ 
ax 
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In other words, f" may be written as 

f a  = [x". HI ( 5 )  

for the Poisson bracket structure defined by [A, E ]  = (aA/ax")Joh(dE/axh) .  Equation 
(4) is the Jacobi identity for such a bracket. 

Equations (2) and (3) imply that 

which means that, if H does not depend explicitly on time, H is a constant of motion. 
Therefore, to construct a time-independent Hamiltonian, we need to find a constant 
of motion of ( I ) .  The construction of Jab may, in general, be achieved using geometric 
arguments [7], but for the examples discussed below the general theory will not be 
needed. 

We are interested in SU(2), and we therefore consider the case N = 3 .  For any 
odd N we get 

de t J=O (7) 

JYbVh=O ( 8 )  

or 

for some non-trivial V,. It has been shown [13] that if Jab satisfies (2) and (3), then 
V, is always proportional to a gradient, 

ac 
ax 

V h = A a  

for some A and C. It is straightforward to see that 

[C,  A] = 0 (10) 

for any A ( x " ) .  C is called a Casimir function for Jab because it has vanishing Poisson 
bracket with any dynamical variable. If C is time independent, then C must be a 
constant of motion. 

Conversely, it is direct to see that Jab given by 

is antisymmetric and it satisfies the Jacobi identity for any function p. Furthermore, 
C is a Casimir function for Jab. It is worth noting that the fact that C is a Casimir 
function for Jab is related to the construction of the Hamiltonian theory (and of J a b  
in particular) and it is nor, in any way, contained in (1). There is only a consistency 
requirement, i.e. that C be a constant of motion for ( l ) ,  but any such constant will do. 

Let us consider the free symmetric top. The equations of motion are 

L , = O  (14) 
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where L, are the components of angular momentum along principal axes and I, = 1, = I 
and I, are the eigenvalues of the inertia tensor of the top. 

It is very well known that 

K ,  = L,  (15) 

and 

K , = L : + L :  

are constants of motion. 
The standard Hamiltonian description is given by 

Jab - EobcL, 
I -  

H I =  - 
21 21, 

It is straightforward to check that (12)-(14) follow from (2) using the expressions 

It is worth noticing that Jyb and H, may he rewritten in terms of K,  and K 2  as 
(17) and (18). The bracket (17) satisfies (3) and (4). 

and 

Therefore, C, given by 

C, = K :  + K2 

is a Casimir operator for JYb given by (17) (or (19)). 
Now, for any Poisson bracket structure which admits Casimir functions, the Hamil- 

tonian is not uniquely defined. In fact, an arbitrary function of the Casimir functions 
may be added to the original Hamiltonian without changing the equations of motion. 
In particular, we may consider 

which gives rise, of course, to the correct equations of motion (12)-(14) using the 
bracket (17). 

Consider now a general Casimir function 

C = C(K: ,  K2)  (23) 

and define the bracket 

It may be shown that Jab satisfies conditions (3) and (4) for an arbitrary function 
p. Note that the bracket defined by (24) need not (and will not, in general) define a 
Lie algebra. Consider an arbitrary function H 

' (25) H = H ( K : ,  K,) 
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such that 

We now recover (12)-(14) by simply requiring that 

We have therefore constructed a Hamiltonian theory r (12)-(14) v 
two arbitrarv functions C and H subiect to the condition (26). , ,  

To get a q-algebra SU(2), for the Poisson bracket relations consider the choice of 
the SU(2), classical Casimir function (for constant q )  

sinh q sinh(qL3) ( sinh 7 r) 
and define H2 by 

We then get, using (27) 

and the Poisson bracket relations 

(31) 
1 sinh(2qL3) 

Job - u b c s  J;’ = - J:’= L ,  J:‘ = L, 2 - l r 2 &  
J L, 2 sinh q 

are exactly those of SU(2),, in the classical (Poisson bracket) case. 
We can now consider H ;  which differs from H, by an arbitrary function of C,.  

The Hamiltonian H i  generates (12)-(14) using the brackets J ; b  given by (31). One 
example is 

which is in some sense analogous to H, in the SU(2) case. ( H ;  reduces to H ,  in the 
limit 7 + 0.) 

H ;  given by (32) and the SU(2), brackets defined in (31) may be used to describe 
the symmetric top in a similar way in which H, and J:b corresponding to SU(2) 
perform the same task. 

It is a straightforward matter to convince oneself that the operator algebra induced 
by (31 )  as well as the operator Hamiltonian corresponding to (29) give rise to the 
correct quantum equations of motion for the symmetric top (using then the SU(2), 
algebra rather than SU(2) one for the commutators of angular momentum). Again, in 
the quantum mechanical case the Hamiltonian may be modified by the addition of an 
arbitrary function of the SU(2), Casimir operator and the quantum analogue of H ;  
give rise to the correct quantum equations. 
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Similarly, the Hamiltonian description of the motion of a charged particle on a 
constant and homogeneous magnetic field B can be achieved with an SU(2), algebra. 
In fact, the equations of motion are 

U, = uv2B ( B  = lBl) (33) 

U, = --nu, B (34) 
U, = 0 (35) 

where U, are the components of the velocity, 01 is a constant and we have chosen the 
3-axis in the B direction. We have that k ,  and k, 

k,  = U, k , = v : + v :  

are constants of motion. 
A particular choice of Hamiltonian is 

L = - a h ,  (36)  
which works both for the SU(2), and SU(2) Poisson bracket relations for the com- 
ponents of the velocity. Other Hamiltonians are allowed by adding arbitrary functions 
of the Casimir functions of SU(2), (or SU(2)) depending on  the Poisson bracket 
relations used in the Hamiltonian description. Again. the quantum version of the theory 
can be carried out with an SU(2), algebra for the commutation relations of the 
components of the velocity, using a procedure similar to the one described for the 
symmetric top. 

We have thus showed that the Hamiltonian descriptions of the free symmetric top 
and of the charged particle moving on a constant and homogeneous magnetic field 
may be achieved using the SU(2), algebra for the Poisson bracket (or commutator) 
relations both in the classical and quantum mechanical cases. Note that more general 
algebras and Hamiltonians are allowed by (23)-(27) and (33)-(36). 

It is worth mentioning that the use of q-algebras in nuclear energy spectra has 
improved previous theoretical results (see [ 5 ] ) .  Strictly speaking, that model corre- 
sponds to a spherical rotator. The Hamiltonian used is proportional to the Casimir 
operator of SU(2), and, therefore, angular momentum is conserved. 

It is interesting to consider applications of the ideas sketched in this letter to field 
theory as well as fluid dynamics. The construction of Hamiltonian descriptions for 
singular systems using the scheme presented here is also worth studying. 

The general construction of the Hamiltonian description starting from the equations 
of motion as well as some applications to singular systems is done in [7]. The 
construction of a Hamiltonian theory for Bianchi V cosmological models is discussed 
in 1141. The applications of the ideas described in this letter to the construction of 
group algebras with given Casimir functions (or operators) is performed in [15]. 

Fruitful discussions with 0 Castafios, A M Cetto, L de la PeCa, A Frank, P Ripa, M 
P Ryan Jr, J Sheinbaum and L F Urrutia are gratefully acknowledged. Special thanks 
are due to E C G Sudarshan for enlightening comments and much encouragement. 
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